[DOI] 10.3969 / j. issn. 1671-6450.2024.01.014

肿瘤防治专题

基于生物信息学构建口腔鳞状细胞癌免疫基因的 预后模型

王锦航,彭士雄,杨凯成,陈彦平,崔子峰

基金项目:河北省自然科学基金项目(H2022206410);河北省省级科技计划项目(22377779D);河北省卫生厅青年科技 课题(20230147)

作者单位: 050000 石家庄市第二医院口腔科(王锦航);河北医科大学第四医院口腔科(彭士雄、杨凯成、陈彦平、崔子峰) 通信作者: 崔子峰, E-mail: cuizifeng358@ foxmail. com

【摘 要】目的 旨在构建免疫相关基因(IRGs)的风险预测模型,以预测口腔鳞状细胞癌(OSCC)患者的预后。 方法 应用生物信息学技术分析 OSCC 的转录组测序数据,鉴定出差异表达的 IRGs(DEIRGs)。通过 Cox 回归分析构 建 DEIRGs 的风险预测模型,并对其预测能力进行评估。分析该模型与临床病理和免疫细胞浸润的相关性。结果 通过比较 OSCC 和正常样本共鉴定出 3 634 个差异表达基因,其中包括 330 个 DEIRGs(FDR <0.05, llogFCl >1)。单 因素 Cox 回归分析筛选出与预后相关的 20 个 DEIRGs(P <0.05),多因素 Cox 回归分析筛选出其中 15 个 DEIRGs 用 于构建风险预测模型。该模型可作为 OSCC 患者的独立预后因素(P <0.001),预测患者预后的能力具有较高的准确 性(AUC =0.732),并与临床分期(t = -3.484,P <0.001)、B 细胞(Cor = -0.180,P =0.002)和 CD4⁺T 细胞(Cor = -0.127,P =0.026)密切相关。结论 基于 15 个预后相关 DEIRGs 构建的风险预测模型能够有效地预测 OSCC 患者 的预后,可帮助临床医生为不同风险的 OSCC 患者选择个性化的治疗策略。

【关键词】 口腔鳞状细胞癌; 免疫相关基因; 预后; 风险预测模型; 癌症基因组图谱数据库

【中图分类号】 R739.85 【文献标识码】 A

Constructing a prognostic model of immune genes in oral squamous cell carcinoma based on bioinformatics *Wang Jinhang*^{*}, *Peng Shixiong*, *Yanng Kaicheng*, *Chen Yanping*, *Cui Zifeng*. ^{*} *Department of Stomatology*, *Shijiazhuang Second Hospital*, *Hebei Province*, *Shijiazhuang* 050000, *China*

Corresponding author: Cui Zifeng, E-mail: cuizifeng358@ foxmail. com

Funding program: Hebei Provincial Natural Science Foundation (H2022206410); Hebei Provincial Science and Technology Program (22377779D); Hebei Provincial Health Department Youth Science and Technology Project (20230147)

[Abstract] Objective To construct a risk prediction model for immune related genes (IRGs) to predict the prognosis of oral squamous cell carcinoma (OSCC) patients. **Methods** Applying bioinformatics technology to analyze transcriptome sequencing data of OSCC and identify differentially expressed IRGs (DEIRGs). Construct a risk prediction model for DEIRGs through Cox regression analysis and evaluate its predictive ability. Analyze the correlation between the model and clinical pathology and immune cell infiltration. **Results** By comparing OSCC and normal samples, a total of 3634 differentially expressed genes were identified, including 330 DEIRGs (FDR <0.05, $|\log FC| > 1$). Univariate Cox regression analysis identified 20 DEIRGs related to prognosis (P < 0.05), while multivariate Cox regression analysis identified 15 DEIRGs for constructing a risk prediction model. This model can serve as an independent prognostic factor for OSCC patients (P < 0.001), with high accuracy in predicting patient prognosis (AUC = 0.732), and is closely related to clinical staging (t = -3.484, P < 0.001), B cells (Cor = -0.180, P = 0.002), and CD4 ⁺ T cells (Cor = -0.127, P = 0.026). **Conclusion** A risk prediction model based on 15 prognostic related DEIRGs can effectively predict the prognosis of OSCC patients and help clinicians choose personalized treatment strategies for OSCC patients with different risks.

(Key words) Oral squamous cell carcinoma; Immune-related genes; Prognosis; Risk prediction model; The cancer genome atlas database

口腔鳞状细胞癌(oral squamous cell carcinoma,

OSCC) 是头颈部最常见的恶性肿瘤。尽管临床诊断和

治疗不断改进,但过去 10 年间 OSCC 患者的病死率并 未显著改善^[1-2]。目前临床中用于风险分层或预后监 测的传统指标在评估 OSCC 患者的预后中仍存在许多 不足,因此有必要挖掘潜在的生物标志物来更准确地 实现对 OSCC 患者预后的评估,从而帮助临床医生为 不同风险的 OSCC 患者选择个性化的治疗策略。

免疫细胞广泛分布于肿瘤免疫微环境(tumor immune microenvironment, TIME) 中,并与肿瘤的发生和 进展密切相关^[3]。免疫逃逸可通过表达免疫监视位 点配体或分泌免疫抑制因子来抑制免疫系统对肿瘤的 有效识别和杀伤,被认为是肿瘤的特征之一[45]。既 往学者的研究已证实了单个或多个免疫相关基因(immune-related genes, IRGs) 在 OSCC 中的表达失调,但 缺乏结合数据库分析 IRGs 与 TIME 或 OSCC 患者预后 间关系的研究。因此,本研究利用癌症基因组图谱 (the cancer genome atlas, TCGA) -OSCC 数据库和免疫 基因数据库等,构建了一个由15个预后相关且差异表 达的免疫相关基因(differentially expressed immune-related genes, DEIRGs) 组成的 OSCC 风险预测模型,并 探讨了该模型在 OSCC 患者预后和临床中的价值。此 外,本研究还分析了 DEIRGs 的转录调控机制以及模 型对临床病理和 TIME 的影响,报道如下。

1 资料与方法

1.1 数据的获取和处理 本研究使用 R 软件(v3.5. 2)进行统计分析和绘图。从 TCGA 数据库下载截至 2021 年 7 月 HTSeq-FPKM 类型的 OSCC RNA-seq 数 据,包括 330 个 OSCC 和 32 个正常样本。数据中的基 因名称通过 Ensembl 数据库提供的文件 "homo_sapiens. grch38.104.chr.gf.gz"进行注释和转换。最后通过 R "limma"包对数据进行预处理。OSCC 患者的预后和 临床病理数据同样从 TCGA 数据库下载,其中包括性 别、年龄、总生存期(overall survival,OS)、生存状态、肿 瘤分化程度、肿瘤分期和 T 分期。由于数据中大多数 OSCC 患者的 M 和 N 分期数据缺失,因此本研究未包 括这些数据的分析。IRGs 目录从 ImmPort 数据库下 载,包含 2 483 个已通过研究验证的 IRGs。与癌症相 关的 318 个转录因子(transcription factors,TFs) 目录从 Cistrome 癌症项目下载。

1.2 DEIRGs 的鉴定和富集分析 对预处理后的数据 进行 Wilcoxon 秩和检验,以 FDR < 0.05 和 | logFC | > 1 作为阈值来鉴定 OSCC 和正常样本间的差异表达基 因。将差异表达基因与 IRGs 间的重叠基因选定为 DEIRGs。通过 R 包(clusterProfiler、org. hs. eg. db、enrichplot、ggplot2)、Gene Ontology(GO)和 Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库对 DEIRGs 行富集分析,以明确 DEIRGs 可能参与的生物学机制, *P* < 0.05 为差异具有统计学意义。

1.3 风险预测模型的构建 将 DEIRGs 的表达数据 和预后数据结合后,使用 R "survival"包对超过 3 个月 随访时间的 OS 数据(310 例)进行单因素 Cox 回归分 析以减少采样偏差, P < 0.05 为 DEIRGs 和预后间存 在相关性。然后使用 R "step"函数对上述结果进行简 化以避免过度拟合,经过简化的数据被整合到多因素 Cox 回归分析中,用于构建风险预测模型。模型计算公 式为 *RiskScore* = $\sum_{i=1}^{n}$ [(*expGene*) *i* × *coefi*],其中 coef 是 多因素 Cox 回归分析中某个基因的回归系数, expGene 是该基因的表达值, *n* 是预后相关 DEIRGs 的数量^[6]。

1.4 预后相关 DEIRGs 和差异表达转录因子(differentially expressed TFs, DETFs)间调控网络的构建 选 择在 TFs 和差异表达基因间重叠的基因作为 DETFs。 以 *P* < 0.05 和 | COR | > 0.3 作为阈值,利用 Pearson 检 验分析预后相关 DEIRGs 和 DETFs 间的关系。Cytoscape 软件(v3.8.2)可视化两者间的调控网络。

1.5 风险预测模型的能力和相关性分析 依据模型公 式计算每个 OSCC 患者的 RiskScore,并以中位数作为截 断值将其分为低风险组和高风险组。使用 R "survivor"包 对低、高风险组行 Kaplan-Meier 生存曲线分析。使用 R "survivalROC" 句绘制时间相关的受试者工作特征(ROC) 曲线,并计算曲线下面积(AUC)来评估模型预测预后的 准确性。AUC 值的范围: 0.5~0.7 表示中等准确性, >0.7~0.9 表示较高准确性, >0.9 表示高准确性^[7]。使 用 R "survival ROC" 包评估模型相较于传统临床病理特征 的预测准确性优势。使用 R "survivor"包对模型和 OSCC 患者的临床病理特征进行单因素和多因素 Cox 分析,以 验证模型的独立预后价值。使用 R"beeswarm"包对模型 和 OSCC 患者的临床病理特征进行相关性分析。利用 TIMER 数据库和 Pearson 检验分析模型分别与 B 细胞、 CD4⁺T细胞、CD8⁺T细胞、巨噬细胞、中性粒细胞和树突 状细胞间浸润的关系。P<0.05为差异具有统计学意义。

2 结 果

2.1 差异表达基因、DEIRGs和DETFs的鉴定在 OSCC和正常样本的39740个mRNA中共鉴定出3634个差异表达基因(FDR < 0.05和llogFCl > 1),其中上调基因2404个,下调基因1230个(图1A)。差异表达基因和IRGs的交集鉴定出330个DEIRGs,其中上调基因215个,下调基因115个(图1B)。差异表达基因与TFs的交集鉴定出61个DETFs,其中上调基因42个,下调基因19个(图1C)。

注: A. 差异表达基因的鉴定; B. DEIRGs 的鉴定; C. DETFs 的鉴定。红色为上调基因,绿色为下调基因,黑色为无差异基因。 图 1 差异表达基因、DEIRGs 和 DETFs 的鉴定

Fig. 1 Identification of differentially expressed genes, DEIRGs, and DETFs

2.2 DEIRGs 的富集分析 GO 富集分析显示, DEIRGs 主要涉及"GO:0048018 受体配体活性""GO: 0005126 细胞因子受体结合"和"GO:0005125 细胞因 子活性"等(*P* < 0.05)。KEGG 富集分析显示, DEIRGs 主要参与"hsa04060 细胞因子一细胞因子受体相互作 用""hsa04151 PI3K-Akt 信号通路"和"hsa04630 JAK-STAT 信号通路"等(*P* < 0.05),见表 1。

表 1 DEIRGs 的富集分析 Tab. 1 Enrichment analysis of DEIRGs

项目	条目编号	具体描述	<i>P</i> 值	差异基 因数目
MF	GO: 0048018	受体配体活性	7.72E-99	117
MF	GO: 0005126	细胞因子受体结合	4.47E-57	70
MF	GO: 0005125	细胞因子活性	7.66E-63	68
CC	GO: 0009897	质膜外侧	3.42E-29	52
CC	GO: 0062023	含胶原的细胞外基质	5.37E-06	24
CC	GO: 0031983	囊泡腔	4.64E-06	22
BP	GO: 0050900	白细胞迁移	4.78E-30	60
BP	GO: 0060326	细胞趋化作用	3.72E-36	55
BP	GO: 0001819	细胞因子产生的正调控	3.67E-26	54
KEGG	hsa04060	细胞因子-细胞因子受体相互作用	8.24E-58	85
KEGG	hsa04151	PI3K-Akt 信号通路	1.68E-06	32
KEGG	hsa04630	JAK-STAT 信号通路	3.71E-14	31

注: GO 富集分析中 BP、CC、MF 富集度最高的前 3 名; KEGG 富集 分析中富集度最高的前 3 名。BP 为生物过程; CC 为细胞成分; MF 为 分子功能; KEGG 为信号通路。

2.3 预后相关 DEIRGs 和 DETFs 间的调控网络 通过对 DEIRGs 和 OSCC 患者的 OS 行单因素 Cox 回归分析筛选出 20 个与预后相关的 DEIRGs(*P* < 0.05)(图 2A),分别为 VEGFD、SFTPA2、SEMA3A、GAST、BIRC5、STC1、DKK1、CCL26、IL1A、PLAU、CXCL8、

SLURP1、PDGFRB、PGLYRP4、IL36A、TNFRSF19、CT-LA4、SEMA3G、IL17RD、AVPR2。Pearson 检验发现 16 个预后相关的 DEIRGs 和 28 个 DETFs 间存在相关性 (*P* < 0.05, |COR| > 0.3),其中仅 SLURP1 与 BRCA1 或 CDK2 之间以及 BIRC5 与 KAT2B 之间呈负相关,其 余均为正相关。并且 BIRC5、SEMA3G、IL17RD 和 CT-LA4 在该调控网络中可能扮演核心角色(图 2B)。

2.4 风险预测模型的构建 通过对 20 个预后相关 DEIRGs 行 R "step"函数和多因素 Cox 回归分析,筛选 出其中 15 个用于构建风险预测模型。在该模型中, VEGFD、SFTPA2、SEMA3A、GAST、STC1、CCL26、CX-CL8 为高风险基因(HR > 1),SLURP1、IL36A、PDG-FRB、BIRC5、PGLYRP4、TNFRSF19、IL17RD、AVPR2 为 低风险基因(HR < 1)。模型计算公式为 RiskScore = (0.530859772 × VEGFD) + (0.208685511 × SFTPA2) + (0.087666745 × SEMA3A) + (0.012001686 × GAST) + (0.009443492 × STC1) + (0.007784836 × CCL26) + (0.001318513 × CXCL8) + (-0.01600693 × SLURP1) + (-0.014374813 × IL36A) + (-0.016585009 × PDGFRB) + (-0.020523714 × BIRC5) + (-0.475553967 × IL17RD) + (-1.032424 × AVPR2),见表 2。

OSCC 患者根据 RiskScore 的中位数分为高风险组 (n=154)和低风险组(n=155)。Kaplan-Meier 分析得 出,高风险组和低风险组的 5 年生存率分别为 0.271 (95% CI 0.173~0.426)和 0.649(95% CI 0.539~ 0.783),高风险组的预后明显差于低风险组(P < 0.001)(图 3A)。ROC 曲线发现该模型的 AUC 值为 0.732,表明其预测能力具有较高的准确性(图 3B)。

注: A. 预后相关 DEIRGs 的森林图。红色为高风险; 绿色为低风险。B. 预后相关 DEIRGs 和 DETFs 间的调控网络。红圈为高危 DEIRGs, 绿圈 为低危 DEIRGs, 蓝三角为 DETFs; 红线为正相关, 绿线为负相关。

图 2 预后相关 DEIRGs 和 DETFs 间的调控网络

Fig. 2 Regulatory network between prognosis related DEIRGs and DETFs

表 2 OSCC 风险预测模型中 15 个预后相关 DEIRGs 的多因素 Cox 回归分析
--

		-						
Fab. 2	Multivariate	Cox regression	1 analysis of 15	o prognostic	related	DEIRGs in the	OSCC risk	prediction model

基因名称	Coef	HR	HR.95L	HR. 95H
VEGFD	0.530859772	1.700393631	1.278594478	2.261341301
SFTPA2	0.208685511	1.232057469	0.986450716	1.538815453
SEMA3A	0.087666745	1.091624272	1.006626636	1.183798946
GAST	0.012001686	1.012073995	1.000748557	1.023527602
STC1	0.009443492	1.009488222	0.999100821	1.019983619
CCL26	0.007784836	1.007815217	1.001880289	1.013785302
CXCL8	0.001318513	1.001319383	1.000068969	1.002571360
SLURP1	-0.001600693	0.998400587	0.996994408	0.999808750
IL36A	-0.014374813	0.985728011	0.967595741	1.004200071
PDGFRB	-0.016585009	0.983551765	0.965824023	1.001604900
BIRC5	-0.020523714	0.979685464	0.961009842	0.998724015
PGLYRP4	-0.024620582	0.975680032	0.954881850	0.996931218
TNFRSF19	-0.100318700	0.904549092	0.809254954	1.011064630
IL17RD	-0.475553967	0.621540648	0.401100973	0.963130990
AVPR2	-1.032424000	0.356142624	0.116736590	1.086527958

注: Coef 为回归系数; HR 为风险比; HR >1 为高风险基因; HR <1 为低风险基因。

2.5 风险预测模型的能力分析 结合临床病理特征 后行单因素 Cox 回归分析,结果显示年龄(P=0.008)、肿瘤分期(P<0.001)、T分期(P=0.002)和 RiskScore(P<0.001)与预后相关(图4A)。进一步行 多因素 Cox 回归分析,结果表明年龄(P=0.001)和 RiskScore(P<0.001)与预后独立相关(图4B)。ROC 曲线分析显示,相比于传统的临床病理特征,该模型具 有更好的准确性优势(AUC=0.717)(图4C)。

2.6 风险预测模型的相关性分析 相关性分析结果 表明,男性患者中 PDGFRB 和 BIRC5 的表达水平较高;G1和G2时 PGLYRP4和IL36A的表达水平较高,G3和G4时 AVPR2和IL17RD 的表达水平较高;Ⅲ期

和 Ⅳ 期时 CXCL8、BIRC5、SEMA3A、GAST、STC1 和 RiskScore 的水平较高; T3 和 T4 期时 STC1 的表达水 平较高,AVPR2 的表达水平较低(*P* < 0.05)(图 5)。 这些结果表明,DEIRGs 基因的异常调节与 OSCC 的发 展密切相关。

为了确定模型是否与 OSCC 患者的 TIME 相关, 利用 TIMER 数据库分析了 RiskScore 与 TIME 中免疫 细胞浸润间的关系。Pearson 检验结果发现,RiskScore 与 B 细胞(Cor = -0.180, P = 0.002) 和 CD4⁺T 细胞 (Cor = -0.127, P = 0.026) 呈负相关,与 CD8⁺T 细 胞、树突状细胞、巨噬细胞和中性粒细胞无相关性 (P > 0.05)(图 6)。

注: A. Kaplan-Meier 生存分析; B. ROC 曲线分析。 图 3 OSCC 患者的风险预测模型 Fig. 3 Risk prediction model for OSCC patients

Fig. 4 Analysis of the Capability of Risk Prediction Models

3 讨 论

风险分层对于预测恶性肿瘤患者的预后和治疗决 策至关重要。目前,对于 OSCC 患者预后的预测和治 疗的选择主要基于美国癌症分期联合委员会(AJCC) 发布的 TNM 分期以及美国国立综合癌症网络 (NCCN)发布的肿瘤临床实践指南,但临床工作中发 现即使在具有相同或相似 TNM 分期和治疗方式的患 者中,预后也存在显著差异^[89]。肿瘤免疫靶点治疗 药物的出现改善了部分晚期 OSCC 患者的生存率,并 且通过增强免疫应答、刺激肿瘤特异性免疫、打破免疫 耐受或重新激活免疫细胞等方式识别并杀死肿瘤细 胞^[1041],这种治疗方式涉及代谢、炎性反应和 TIME 等 多种复杂机制的改变。考虑到肿瘤细胞异型性甚至癌 变往往发生于炎性细胞密集浸润的 TIME 中^[12],因此 本研究期望通过探讨 OSCC 中免疫相关基因组和 TIME 的变化,提供关于预测患者预后和发现免疫治疗

潜在靶点的重要依据。

本研究在 OSCC 的差异表达基因中共发现了 330 个 DEIRGs。富集分析表明,其中涉及的主要生物学特 征为细胞因子、JAK-STAT 信号通路以及 PI3K-Akt 信 号通路。细胞因子可以引起人体 TIME 或免疫系统的 变化,并且在 OSCC 中激活的免疫细胞已被证实可通 过分泌炎性细胞因子促进肿瘤细胞的免疫逃逸^[1344]。 JAK-STAT 信号通路参与调节免疫系统,影响肿瘤细 胞的分化、增殖、凋亡^[1546]。PI3K/Akt 信号通路中关 键因子的异常活化可促进 OSCC 细胞的侵袭和转移, 并与患者的肿瘤分化程度、肿瘤分期和淋巴结转移密 切相关^[17]。此外,本研究在 DETFs 和 DEIRGs 的调控 网络中发现了 28 个 DETFs 和 16 个预后相关的 DEIRGs 之间存在调控关系,其中 BIRC5、SEMA3G、 IL17RD 和 CTLA4 可能是该网络中的核心基因。因 此,DEIRGs 及其所涉及的生物学特征在 OSCC 和免疫

G3&4

Fig. 5 Correlation between risk prediction model and clinical pathological features

注: A. B 细胞; B. CD4⁺T 细胞; C. CD8⁺T 细胞; D. 树突状细胞; E. 巨噬细胞; F. 中性粒细胞。 **图** 6 风险预测模型与肿瘤免疫细胞浸润的相关性 **Fig.** 6 Correlation between risk prediction model and tumor immune cell infiltration

调节中发挥着重要功能,对于分析肿瘤的发展或制定 治疗措施具有参考价值。

尽管近期的研究已经确定了一些可以改善 OSCC 诊断或治疗的生物标志物,但由于 OSCC 的高复发率 和不良预后,研究仍需要探索潜在的生物标志物以便 精准地明确 OSCC 患者的预后情况,这将有助于根据 每位 OSCC 患者的不同预后风险采取个性化的治疗措 施。因此,本研究构建了一个包含15个预后相关 DEIRGs 的风险预测模型,该模型中的部分 DEIRGs 如 SEMA3A、CXCL8 和 BIRC5 等基因已经被研究证明与 OSCC 密切相关^[18-20],这些 DEIRGs 具有成为免疫治疗 靶点或预后生物标志物的潜力。本研究同时评估了该 模型的准确性和临床价值。与低危组相比,模型中高 危组患者的预后明显较差,且高危组的肿瘤分期更晚, 表明该模型不仅能预测患者的预后情况,还能预测 OSCC 的进展。ROC 曲线显示模型的 AUC 为 0.732, 证明该模型具有较高的诊断准确性。Cox 回归分析证 实该模型为 OSCC 患者的独立预后因素, ROC 曲线进 一步明确了该模型与传统的临床病理特征相比具有更 好的准确性优势。

本研究还分析了模型与免疫细胞浸润的相关性, 以反映 OSCC 中 TIME 的状态。研究发现 RiskScore 与 B 细胞和 CD4⁺T 细胞呈负相关,可以看出随着 Risk-Score 的增加机体的免疫功能逐渐受损,这可能导致 TIME 的失衡。以上结论证实了该模型具有较高的风 险分层能力,对治疗决策具有较高的指导价值。但本 研究仍存在一些局限性。首先,该研究使用了来自多 个数据库的大样本量数据集,但仍需进行更广泛的验 证。其次,还需要进行体内和体外实验研究,以阐明模 型中 15 个预后相关 DEIRGs 的具体分子调控机制。

综上所述,本研究基于 DEIRGs 构建了一个较为 精确的风险预测模型,其中 15 个预后相关的 DEIRGs 充当重要角色。这些发现为理解 OSCC 的免疫机制提 供了新的视角,也为临床医生选择个性化治疗策略提 供帮助,以提高 OSCC 患者的生存率。

利益冲突:所有作者声明无利益冲突

作者贡献声明

王锦航:数据获取,统计分析,论文撰写;彭士雄:数据获 取,统计分析;杨凯成:数据获取,参与撰写;陈彦平:研究构思, 论文审核;崔子峰:课题设计,论文撰写,论文终审

参考文献

 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394– 424. DOI: 10. 3322/caac. 21492.

- [2] Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip,tongue and mouth [J]. Oral Oncol,2020,102: 104551. DOI: 10. 1016/j. oraloncology. 2019. 104551.
- [3] Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy [J]. Trends Cancer, 2020, 6(7): 580–592. DOI: 10. 1016/j. trecan. 2020. 02. 003.
- [4] Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation
 [J]. Cell, 2011, 144 (5): 646-674. DOI: 10.1016/j. cell. 2011.
 02.013.
- [5] Wu Y, Biswas D, Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response [J]. Semin Cancer Biol, 2022, 84: 89-102. DOI: 10.1016/j. semcancer. 2021.02.013.
- [6] Guo X, Wang Y, Zhang H, et al. Identification of the prognostic value of immune-related genes in esophageal cancer [J]. Front Genet, 2020,11:989. DOI: 10.3389/fgene. 2020.00989.
- [7] Li R, Liu X, Zhou XJ, et al. Identification of a prognostic model based on immune-related genes of lung squamous cell carcinoma [J]. Front Oncol, 2020, 10: 1588. DOI: 10. 3389/fonc. 2020.01588.
- [8] Almangush A, Mäkitie AA, Triantafyllou A, et al. Staging and grading of oral squamous cell carcinoma: An update [J]. Oral Oncol, 2020, 107: 104799. DOI: 10.1016/j. oraloncology. 2020. 104799.
- [9] Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, Version 2. 2020, NCCN clinical practice guidelines in oncology [J]. J Natl Compr Canc Netw, 2020, 18(7): 873-898. DOI: 10. 6004/jnccn. 2020.0031.
- [10] Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization [J]. Cell, 2018, 175 (2): 313– 326. DOI: 10.1016/j. cell. 2019.01.008.
- [11] Olmos M, Glajzer J, Büntemeyer TO, et al. Neoadjuvant immunotherapy of oral squamous cell carcinoma: Case report and assessment of histological response [J]. Front Oncol, 2021, 11: 720951. DOI: 10. 3389/fonc. 2021. 720951.
- [12] Yang P, Ding J, Bian Y, et al. Long non-coding RNAs and cancer mechanisms: Immune cells and inflammatory cytokines in the tumor

(上接77页)

- [18] Zhang W, Ruan X, Li Y, et al. KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/β-catenin signaling pathway [J]. Theranostics ,2022 , 12(4) : 1500-1517. DOI: 10.7150/ thno. 66142.
- [19] 王洁,魏谨,汪明云. LSD1 和 PTEN 在人卵巢癌组织中的表达及 相关性[J].现代肿瘤医学,2021,29(23):4181-4184. DOI: 10. 3969/j, issn. 1672-4992. 2021. 23. 023.
- [20] Dong L, Zhu J, Deng A, et al. Relationship between histone demethylase LSD family and development and prognosis of gastric cancer [J]. Front Immunol, 2023, 5(14): 1170773. DOI: 10.3389/fimmu. 2023.1170773.
- [21] Wangzhou K, Fu W, Li M, et al. microRNA-17 is a tumor suppressor in oral squamous cell carcinoma and is repressed by LSD1 [J]. Oral Dis,2023,29(2):491-504. DOI: 10.1111/odi.13944.
- [22] Han Y, Xu S, Ye W, et al. Targeting LSD1 suppresses stem cell-like properties and sensitizes head and neck squamous cell carcinoma to PD-4 blockade [J]. Cell Death Dis, 2021, 12 (11): 993. DOI: 10. 1038/s41419-021-04297-0.

microenvironment [J]. Med Oncol, 2022, 39 (7): 108. DOI: 10. 1007/s12032-022-01680-5.

- [13] Laliberté C, Ng N, Eymael D, et al. Characterization of oral squamous cell carcinoma associated inflammation: A pilot study [J]. Front Oral Health, 2021, 2: 740469. DOI: 10. 3389 / froh. 2021. 740469.
- [14] Mota de Oliveira M, Peterle GT, Monteiro da Silva Couto CV, et al. PAI-I expression in intratumoral inflammatory infiltrate contributes to lymph node metastasis in oral cancer: A cross-sectional study [J]. Ann Med Surg, 2021, 65: 102303. DOI: 10. 1016/j. amsu. 2021.102303.
- [15] Fernandes E, Soans E, Xu J, et al. Novel fusion proteins of interferon alpha2b cause growth inhibition and induce JAK-STAT signaling in melanoma [J]. J Immunother, 2010, 33 (5): 461-466. DOI: 10. 1097/CJI.0b013e3181d32e59.
- [16] Hernandez-Vargas H, Ouzounova M, Le Calvez-Kelm F, et al. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells [J]. Epigenetics, 2011, 6 (4): 428-439. DOI: 10.4161/epi.6.4. 14515.
- [17] Liu H, Zhang H, Fan H, et al. TAB2 promotes the biological functions of head and neck squamous cell carcinoma cells via EMT and PI3K pathway [J]. Dis Markers, 2022, 2022: 1217918. DOI: 10. 1155/ 2022/1217918.
- [18] Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells [J]. Biomed Rep, 2018, 8(5): 399-406. DOI: 10.3892 /br. 2018.1077.
- [19] Meng L, Zhao Y, Bu W, et al. Bone mesenchymal stem cells are recruited via CXCL8-CXCR2 and promote EMT through TGF-β signal pathways in oral squamous carcinoma [J]. Cell Prolif, 2020, 53(8): e12859. DOI: 10.1111/cpr. 12859.
- [20] Tian T,Zhang L, Tang K, et al. SEMA3A Exon 9 expression is a potential prognostic marker of unfavorable recurrence-free survival in patients with tongue squamous cell carcinoma [J]. DNA Cell Biol, 2020,39(4):555-562. DOI: 10.1089/dna.2019.5109.

(收稿日期:2023-07-09)

- [23] 陈翠,申锷.机械敏感性离子通道 Piezol 在循环系统疾病中的研究进展 [J].中国心血管杂志,2022,27(6):597-601. DOI: 10. 3969/j. issn. 1007-5410.2022.06.020.
- Xiong Y, Dong L, Bai Y, et al. Piezol activation facilitates ovarian cancer metastasis via Hippo/YAP signaling axis [J]. Channels (Austin), 2022, 16 (1): 159-166. DOI: 10. 1080/19336950. 2022.2099381.
- [25] Kim OH, Choi YW, Park JH, et al. Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis [J]. Life Sci, 2022, 308: 120936. DOI: 10. 1016/j. lfs. 2022. 120936.
- [26] Li M, Zhang X, Wang M, et al. Activation of Piezol contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma [J]. Cancer Commun (Lond) ,2022,42(11):1162-1184. DOI: 10. 1002/cac2.12364.
- [27] Hasegawa K, Fujii S, Matsumoto S, et al. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation [J]. J Pathol, 2021, 253(1): 80-93. DOI: 10.1002/path. 5553.

(收稿日期:2023-09-20)